A fleet of marine robots that can tackle complex offshore tasks, part of a recently completed, groundbreaking project funded by Innovate UK, is poised to change approaches to ocean exploration.
Autonomous marine systems are being developed and deployed in increasing numbers. However, as maritime operations become ever more complex and expensive, and installed energy infrastructure increases in scale and distance from shore, there is a rapidly emerging need for more sophisticated multi-platform capabilities. Squads of Adaptive Robots (SoAR), a 2-year collaborative research and development initiative was led by the developer of ecoSUB AUVs, Planet Ocean. The project kicked off in September 2021 and culminated this summer with full system testing at Smart Sound Plymouth on England’s south coast. The SoAR team’s aim was to demonstrate how large-scale survey and exploration missions can be achieved by going beyond the limitations of individual AUVs. Industry partners Planet Ocean, Sonardyne International and HydroSurv worked alongside the National Oceanography Centre (NOC), Royal Holloway University and the Offshore Renewable Energy (ORE) Catapult to develop advanced AI-driven mission planning, communications protocols for fleet coordination and significant improvements in underwater navigation and communications technology. Open-water trials successfully showcased co-ordinated missions designed, monitored and adapted in real-time by an intelligent “Autonomy Engine”. The trials involving several surface and underwater autonomous systems, with mission management conducted from a remote shore-based command and control facility. The trials simulated an offshore windfarm concession survey mission informed by a comprehensive business case analysis by the team at ORE Catapult. SoAR has led to the introduction of several technological innovations, including advanced AI-driven mission planning, open-source communications protocols for heterogenous fleet coordination and a range of new and enhanced platform capabilities for both surface and sub-surface systems. The variety of small form factor robotic platforms involved in the project represented some of the best innovation in UK ocean robotics to date. The SoAR concept is adaptable to various applications but strategically tailored to address the specific needs of the offshore wind sector, developing an approach that will offer new operating paradigms and substantial long term cost savings for offshore asset construction and maintenance compared to conventional methods. The Technology The fleet-level autonomy engine developed by Royal Holloway, University of London serves as the mission’s central nervous system, making real-time decisions and replanning when necessary due to factors such as inaccurate mission execution, vehicle faults, changing in the operating environment, or the addition and removal of stations. The division of labour enabled by this approach showed significant promise in productivity gains made possible by robotics and AI. The SoAR Communications Backbone, developed and released by the team at the NOC addresses the absence of standardised interfaces and communication protocols. It acts as a central messaging system which enables interoperability between the fleet-level autonomy engine, each vehicle-specific command and control system, and any other sub-system requiring bi-directional communication. This is key to allowing the seamless introduction of different platforms and sub-systems in diverse combinations to suit a wide range of mission objectives. For the trial, Sonardyne provided inter-medium communications via its AvTrak 6 Nano acoustic transceivers fitted to each AUV. This enabled simultaneous USBL tracking via a surface vessel and robust telemetry for AUV-to-vessel and AUV-to-AVU communications. ecoSUB AUVs represent a significant advancement in affordable and versatile ocean science robotics. Equipped with the capability to deploy a wide range of advanced sensors including high-quality side scan sonar systems, DVL, acoustic communications and a range of science payloads, these budget-friendly AUVs cross various sectors and application use cases. A small swarm of four ecoSUB AUVs, each fitted with a Sonardyne AvTrak 6 Nano acoustic transceiver, played a crucial role in rapidly assessing the underwater environment and conducting preliminary evaluations to identify targets of interest. Auto-Hover 1 (AH1), owned and operated by NOC, represents the state-of-the art in hover-capable AUV platforms. Equipped with six thrusters, AH1 is capable of exceptional precision in maintaining station and navigating vertically within the water column. With advanced sensing capabilities, and also fitted with an AvTrak transceiver, AH1 was dedicated to close inspection tasks, enabling intricate and comprehensive examination of identified targets. HydroSurv’s innovative long-endurance USV, the REAV-60 was purpose designed and built for operations Beyond Visual Line of Sight (BVLoS). Central to its use case is versatility across a wide array of offshore survey and inspection needs, whilst aligning with incoming regulatory requirements. Sonardyne’s REAV-60 USV ‘Decibel’ assumed a pivotal role, serving as a crucial communications gateway to the AUV swarm. It was fitted with an HPT 3000 transceiver, and running their well-established Ranger-2 software on its topside facilitating inter-medium communication and providing navigation support to the AUVs. Decibel was also equipped with various communications devices including 4G/LTE and Iridium satellite communication systems to enable communications between subsea, surface and the Autonomy Engine. The deployed SoAR fleet was managed and control from HydroSurv’s shore-based Remote Operations Centre in Exeter, using 4G/LTE and Iridium communications. SoAR received funding from the ‘Next Generation Subsea Technologies’ competition, a joint initiative supported by Innovate UK, the Net Zero Technology Centre and the Royal Navy.
0 Comments
First deliveries of ecoSUBm5-Power+ AUV with ecoCAM ecoCAM is a new 4k video and still image camera, developed in house by the ecoSUB R&D team. ecoCAM is fully integrated into the ecoSUBm5-Power+ AUV system. The camera system has been designed to provide extremely high-quality video and still images, whilst being an ideal solution for machine learning applications. A 1.1” Sony IMX267 global shutter CMOS sensor, coupled with a Computar fixed 8mm lens provides high resolution, high frame rates and noise free image reproduction (8.85 MPix (4096 x 2160 px) at 33.0 fps). The camera is an underwater first, running with Subsea USBC data transfer, to provide excellent data speed for video encoding on a Jetson Orin Nano computer, resident in the "back seat" of the ecoSUB. Our existing GoPro camera mount remains available for those that do not require full system integration or shallow water operation. New users from the US and Germany intend to use the ecoCAM for machine vision applications, benefiting from the power of the Nvidia Jetson backseat computer, enabling edge computing. In one case the camera feed is being used with a navigation algorithm to pilot the vehicle into a docking station. The ecoCAM module is a compact unit, rated to 2,500m, suitable for ecoSUBm-series AUV platforms, and is mounted in a custom nose cone that allows the camera to be orientated from forward looking to downward looking for seabed imaging. Subsea lighting packages can be provided for low/zero light applications. Onboard our ecoSUBm5-Power+ AUV platform, the ecoCAM can be coupled with side scan sonar, DVL and acoustic modem for underwater coms and USBL, if required. For more information about ecoCAM and ecoSUB AUVs please contact us via [email protected].
ecoSUB are delighted to introduce our latest team member, Jonathan Law. Jonathan has a Masters from UCL in Robotics & Computation and is a graduate with first class honours in Electrical Engineering. Jonathan joins ecoSUB as a Robotics & Embedded Software Engineer in our R&D department.
Last week Iain travelled to Portugal to join up with the Royal Navy to deploy their ecoSUBm5-Power+ Scout AUV, featuring a brand new Nortek Nucleus DVL-1000, Power+ module for extended endurance and 1200kHz side scan sonar system from Marine Sonic Technology. The AUV was also equipped with sensors for conductivity, temperature and fluorometer for Chlorophyll-a, a nano-modem for underwater communications and an independent pinger system.
REPMUS is a NATO exercise featuring robotic systems being operated underwater, on the surface and in the air. The Royal Navy's Project HECLA team took a range of autonomous systems to operate within the program. The ecoSUB AUV missions were relatively limited due to a lack of support boats during the window of operations, but great to see it complete a couple of small, but perfectly executed missions, with the new Nortek DVL providing an excellent aide to navigation.
One of ecoSUB's recent customers have installed a transit and launch facility in their Hydrogen fuel cell powered XLAUV for multiple ecoSUBu5 micro-AUVs. At 4kg and maintaining a cylinder rule, the ecoSUBu5 is ideal for autonomous launch systems such as this. The ecoSUBu5 has previously been launched by uncrewed surface vehicles and fixed winged aerial drones, so launch by a mother-ship AUV completes Air, Surface and Underwater autonomous deployment - a first for an AUV system.
Launch of the ecoSUBu5 happened on 15 July 2022 as part of a demonstrator mission, where the micro-AUV transited to the surface and sent a status message to the users command and control center. More information can be found here: https://www.prnewswire.com/news-releases/cellula-successfully-completes-demonstration-missions-using-hydrogen-fuel-cell-powered-auv-301605145.html The NEW ecoSUBm5-Power+ AUV out on trials
One of our most recent ecoSUB AUV customers, Dr Adrian Nightingale, based at University of Southampton is currently recruiting for a PhD. This exciting opportunity involves the development of chemical sensors to be integrated on an ecoSUBu5 AUV platform.
For more information please check out: https://www.findaphd.com/phds/project/an-ocean-alkalinity-sensor-for-autonomous-vehicles/?p139668if |
ecoSUB newsKeep up to date with news from the ecoSUB Robotics team Archives
October 2023
Categories |